YOUR PARTNER IN SENSOR TECHNOLOGY

ELEKTRONIK®

Ges.m.b.H

AIR FLOW MEASUREMENT

• ERIK THOR, Ph.D.

• **BASIC DEVELOPMENT / FLUID MECHANICS**

AIR FLOW PHYSICS

Air = Mixture of gas molecules $(N_2, O_2, Ar, CO_2, ...)$

Air velocity v [m/s] =

mean travelled distance per time of an air molecule

Mass flow = transferred mass per time and area [kg/(m²×s)]

= Air Density [kg/m³] × Air Velocity [m/s]

density 2 > density 1

"low" velocity ® regular (" laminar ") flow

"high" velocity ® irregular (" turbulent flow ")

"low - high" velocity , Reynolds number" Re= inertial force / viscous force

Re < 2000 for laminar flow in a pipe

Flowmeter Type	Liquid	Gas	Steam	Pipe size	Clean Fluid	Dirty Fluid
Coriolis	x	x		1/6 to 6 in,	x	Ltd.
Differential Pressure	x	x	x	½ in. and up	x	Ltd.
Magnetic	x	_		1/10 to 100 in.	x	x
Positive Displacement	x	x		2 – 30 in.	x	
Thermal (HW, HF, Calorimetric)	Ltd.	x		Insertion	x	no problem for HF !
Turbine	x	x		2 – 30 in.	x	
Ultrasonic-Transit Time	x	x	Ltd.	1/2 inch and up	x	Ltd.
			'			· ·
Ultrasonic-Doppler	х			1/2 inch and up		x
Vortex	x	x	x	1/2 inch to12 in.	x	

Flowmeter Type	Advantages	Disadvantages	
Coriolis	High accuracy; Low maintenance; Insensitive to flow profile	High initial cost, depending on size and model; Bent tubes subject to fouling; Not available for pipe sizes over six inches	
ifferential Pressure	Low initial cost; Ease of installation; Well understood; Many industry approvals	Limited rangeability; Permanent pressure drop; Uses square root method to calculate flowrate; Requires periodic maintenance	
lagnetic	Obstructionless; High accuracy; No pressure drop	Cannot meter nonconductive fluids (e.g., hydrocarbons); Relatively high initial cost; Electrodes subject to coating	
ositive Displacement	High accuracy; Insensitive to flow profile; High rangeability	Cannot handle dirty fluids; Subject to wear; Pressure drop	
⁻ hermal Calorimetric, Hot Wire, Hot Film)	Relatively low initial cost; Good for low velocity flows	Limited accuracy; Sensitive to problems of dirty fluids except HF	
urbine	High accuracy; Well-known technology; Medium purchase price	Cannot handle dirty fluids; Bearings subject to wear; Pressure drop	
Jltrasonic-Transit Time	High accuracy, depending on model; Obstructionless; Clamp-on convenience; No pressure drop	Limited ability to handle dirty fluids; Can be affected by flow profile; Some models have high initial cost	
Jltrasonic-Doppler	Can meter dirty flows; No pressure drop; Clamp-on convenience	Low to medium accuracy; Reynolds number limitations	
/ortex	Highly versatile: can measure liquid, gas, and steam; Good accuracy	Limited ability to handle low flows; Vibration can affect accuracy; Few industry approvals	

Rate the importance of factors you use when specifying or purchasing flowmeters (scale is 1 to 5)

Criteria	Ranking	Minimum	Maximum
Reliability	4.81	4	5
Compatibility	4.80	4	5
Repeatability	4.78	4	5
Application	4.69	2	5
Technical support	4.67	3	5
User friendly/simplicity	4.60	4	5
Accuracy	4.45	1	5
Maintainability/Rep air	4.30	3	5
Price	3.77	1	5

Jesse Joder, "Flowmeter Shootout Part III", http://www.flowresearch.com/articles.htm

HOT FILM TECHNOLOGY

EE65

Structured Mo metal film (@ 1 µm) on thin glass substrate (150 µm) coated by polyimide protective layer

HOT FILM MEASUREMENT PRINCIPLE

Convective heat transmission depends on temperature difference between hot film and ambient air !

$$\frac{dQ}{dt}[W] \propto T_h - T_a$$

- **T_h-T_a kept constant by**
- Microcontroller (EE70)
- Wheatstone bridge circuit (EE65)

® Temperature Measurement

$$R_t(t) \cong R(0) \cdot (1 + TC \cdot t)$$

1/SHC-characteristic depends on air fluid properties i.e.

- air density r [kg/m³] !!!
- thermal conductivity l [W/(m×K)]
- viscosity h [kg/(m×s)]
- thermal capacity c_p [J/(kg×K)]

AIR PRESSURE -**AN UNCOMPENSATED INFLUENCE**

Continuity equation + Ideal gas equation

$$\frac{1}{A} \cdot \frac{dm}{dt} [kg/(m^2 \cdot s)] = r \cdot v$$

$$\left| r[kg/m^3] = r_0 \cdot \frac{p}{T} \cdot \frac{T_0}{p_0} \right|$$

Measured velocity v_m "True" velocity v

$$v_m = v \cdot \frac{p}{p_0} \rightarrow$$

$$v = v_m \cdot \frac{p_0}{p} = v_m \cdot c(p)$$

Atmospheric air pressure p depends on

height h above sea level

$$p = p_0 \cdot e^{-\frac{h}{8km}}$$

CALIBRATION

1. Velocity measurement device under test (VDUT)

2. Certificated velocity reference

calibration = measurement of the deviations of the VDUT from the reference under controlled flow conditions

E+E primary velocity reference (R)

Laser-Doppler Anemometer (LDA) certificated by PTB

with only 0.2 % uncertainty in velocity measurement

• Wind Tunnel for controlled flow conditions

Open Jet

Closed Jet

v=1 m/s

d=0.2 m

r_{Air} (20°C,1bar) =1.188 kg/m³ h_{Air} (20°C,1bar) =1.824 ×10⁻⁵ kg/(m×s)

® Re=13026 >> 2000 **®** turbulent flow

special tunnel design for laminar, uniform flow in test section

At E+E two closed jets with

(a) closed test section ("Göttingen type")

v=0-30 m/s T_a=10-40°C

(b) open test section ("Prandtl type")

> v=0-40 m/s T_a=RT=23°C

WIND TUNNEL FOR MEASUREMENT OF TRANSMITTER CHARACTERISTICS

Testing of transmitter performance under different

- climatic conditions ® temperature, pressure, humidity
- dynamic conditions ® response time

SUDDEN CHANGE IN...

(a) Velocity at constant temperature (HVAC) ®

ü EE65 (0.2/2s), EE70 (1.5s)

(b) Velocity and temperature ® ü EE70

EE65 optional but slow

Twisting Angle [°]

GUIDELINES FOR GETTING REALISTIC MEASUREMENT RESULTS....

Take care to...

- avoid corners
- avoid walls
- keep parallel to the flow
- avoid flow interrupting elements
- avoid contractions, diffusers

Dont's and Do's

